Карло Ровелли "Семь этюдов по физике" (конспект)

======== 1 ========


гравитационное поле не распределено по пространству, гравитационное поле и есть само это пространство

пространство искривляется там, где есть материя. Вот и все. Уравнение умещается на половине строчки, полностью. Предвидение – что пространство искривляется – стало уравнением.

богатство теории раскрывается в фантасмагорической цепи предсказаний, которые напоминают исступленный бред безумца, но все до единого подтвердились

не только пространство искривляется, время тоже

время бежит быстрее высоко наверху, чем внизу, ближе к Земле. Это было измерено и оказалось верным. Если человек, живший на уровне моря, встретится со своим близнецом, жившим в горах, он обнаружит, что родственник чуть старше его

Пространство целиком способно расширяться и сжиматься.

теория утверждает, что пространство колышется, как поверхность моря. Эффекты от этих «гравитационных волн» наблюдаются в небе на двойных звездах и соответствуют предсказаниям теории с поразительной точностью – до одной стомиллиардной.

Если вкратце, теория описывает многоцветный и потрясающий мир, где вселенные взрываются, пространство схлопывается в бездонные дыры, время замедляется вблизи планет и по безграничному межзвездному пространству бежит рябь, словно по поверхности моря…

Все это результат изначального прозрения: пространство и гравитационное поле суть одно и то же.



======== 2 =======


помните периодическую таблицу
каждый элемент соответствует одному решению главного уравнения квантовой механики

В квантовой механике ни один объект не имеет определенного положения, за исключением случаев, когда он сталкивается лоб в лоб с чем-то еще. Чтобы описать его посередине между одним взаимодействием и другим, мы используем отвлеченную математическую формулу

скачки, которыми каждый объект перемещается из одного места в другое, происходят не предсказуемым образом, а по большому счету случайным. Невозможно предсказать, где электрон появится вновь, можно лишь вычислить вероятность, с которой он возникнет здесь или там. Вопрос вероятности ведет в самое сердце физики, где все, как прежде казалось, регулируется строгими законами, универсальными и неотвратимыми.



=========== 3 ============


Вселенная началась с маленького шарика, а затем взорвалась до своих сегодняшних космических размеров. Это наше современное видение Вселенной, самое крупномасштабное из всех, что мы знаем.

Есть ли что-то еще? Было ли еще раньше что-то? Существуют ли другие похожие вселенные – или непохожие? Мы не знаем.




============== 4 ======================


Во вселенной, описанной в предыдущей главе, свет и физические объекты движутся. Свет состоит из фотонов, частиц света, постигнутых Эйнштейном. Объекты, которые мы видим, состоят из атомов. Каждый атом содержит ядро, окруженное электронами. Каждое ядро составляют плотно упакованные протоны и нейтроны. И протоны, и нейтроны состоят из еще меньших частиц, которые американский физик Мюррей Гелл-Манн назвал «кварками», вдохновившись загадочным словом из бессмысленной фразы произведения Джеймса Джойса «Поминки по Финнегану»: «Три кварка для мастера Марка!»[3] Стало быть, все, чего бы мы ни коснулись, состоит из электронов и из этих кварков.

Сила, «склеивающая» кварки внутри протонов и нейтронов, создается частицами, которые физики (довольно предсказуемым образом) называют «глюонами».[4]

Электроны, кварки, глюоны и фотоны – компоненты всего, что покачивается в пространстве вокруг нас. Они и есть те «элементарные частицы», которые изучаются в соответствующем разделе физики. К ним добавляются еще несколько других частиц, например нейтрино, роящиеся во Вселенной, но мало взаимодействующие с нами, и бозоны Хиггса, недавно зарегистрированные в Женеве в Большом адронном коллайдере ЦЕРНа. Но элементарных частиц на самом деле не так уж много, меньше десяти типов. Пригоршня простейших ингредиентов, которые играют роль деталек в гигантском конструкторе лего, выстраивая всю окружающую нас материальную реальность.

Природа этих частиц и то, как они движутся, описывается квантовой механикой. Эти частицы реальны не как мелкие камушки, а скорее как «кванты» соответствующих полей, равно как фотоны – «кванты» электромагнитного поля. Они элементарные возмущения подвижного субстрата, похожего на поле Фарадея и Максвелла. Крошечные подвижные волны. Они исчезают и появляются вновь согласно причудливым законам квантовой механики, где все существующее никогда не стабильно и есть не более чем скачок от одного взаимодействия к другому.

Даже если мы будем наблюдать за небольшой пустой областью пространства, в которой нет атомов, мы все же детектируем мельчайшее копошение этих частиц. Не существует такого понятия, как настоящая пустота, где нет совершенно ничего. Как спокойнейшее море, если внимательно приглядеться, колышется и дрожит, пусть и слегка, так и поля, формирующие мир, подвергаются мельчайшим колебаниям, и элементарные частицы можно представить себе словно бы имеющими скоротечную жизнь – они будто бы непрерывно созидаются и разрушаются этими движениями.

Таков мир, описываемый квантовой механикой и теорией элементарных частиц. Мы ушли очень далеко от механистического мира Ньютона и Лапласа, где мелкие холодные камешки бесконечно путешествовали по длинным точным траекториям в геометрически неизменном пространстве. Квантовая механика и эксперименты с частицами научили нас тому, что мир – непрерывное, неустанное мельтешение объектов, постоянное возникновение и исчезновение эфемерных сущностей. Совокупность колебаний, как в мире накурившегося хиппи 1960-х. Мир событий, не объектов.

В деталях теория элементарных частиц выстраивалась постепенно в 1950-х, 1960-х и 1970-х годах некоторыми из величайших физиков века, в частности Ричардом Фейнманом и Мюрреем Гелл-Манном. Эта созидательная работа породила замысловатую теорию, основанную на квантовой механике и носящую не очень романтичное название «Стандартная модель элементарных частиц». Стандартная модель была полностью доработана в 1970-х годах, после длительной серии экспериментов, подтвердившей все предсказания. Окончательно она подтвердилась в 2012 году – с открытием бозона Хиггса.

Однако, несмотря на длительную серию успешных экспериментов, физики никогда не принимали Стандартную модель совсем уж всерьез. Эта теория выглядит, по крайней мере на первый взгляд, слепленной из разрозненных частей. Она составлена из различных кусочков и уравнений, собранных вместе без какого-либо явного порядка. Определенное число полей (но почему именно эти?), взаимодействующих между собой определенными силами (но почему этими силами?), каждая из которых задается определенными константами (но почему конкретно эти значения?), и демонстрирующих определенные виды симметрии (но, опять же, почему эти?). Тут мы далеки от простоты уравнений общей теории относительности и квантовой механики.

Сам способ, которым с помощью уравнений Стандартной модели делают предсказания о мире, тоже безумно изощрен. Если эти уравнения использовать напрямую, они ведут к нелепым предсказаниям, когда всякая вычисляемая количественная характеристика оказывается бесконечно большой. Чтобы получить осмысленные результаты, необходимо задать бесконечно большими сами параметры, входящие в уравнения, – чтобы уравновесить абсурдные результаты и сделать их разумными. Этот замысловатый прием носит техническое название «ренормализация». На практике он работает, но оставляет горький привкус во рту любого, кто ищет простоты в природе. В последние годы жизни величайший ученый XX века после Эйнштейна, Поль Дирак, один из создателей квантовой механики и автор первых и главных уравнений Стандартной модели, неоднократно выражал свое недовольство таким положением вещей, заключая, что проблема еще не решена.

Вдобавок в последнее время выявилось неожиданное ограничение Стандартной модели. Вокруг каждой галактики астрономы наблюдают большое облако вещества, которое обнаруживает свое существование гравитационным притяжением, действующим на звезды, и тем, как оно преломляет свет. Но это огромное облако, гравитационное влияние которого мы наблюдаем, нельзя увидеть непосредственно, и мы не знаем, из чего оно состоит. Были выдвинуты многочисленные гипотезы, ни одна из которых, по-видимому, не работает. Очевидно, что там что-то есть, но мы не знаем, что именно. Сегодня это называют «темной материей». Имеются доказательства, что это нечто, не описываемое Стандартной моделью, иначе мы бы его увидели. Нечто отличное от атомов, нейтрино или фотонов…

Неудивительно, что есть многое на свете, друг читатель, что и не снилось нашим мудрецам – или нашим физикам. До недавнего времени мы даже не подозревали о существовании радиоволн и нейтрино, пронизывающих Вселенную. Стандартная модель – по-прежнему лучшее, что у нас есть для мира объектов. Ее предсказания все подтвердились, и, не считая темной материи – и гравитации, рассматриваемой в общей теории относительности как искривление пространства-времени, – Стандартная модель хорошо описывает каждый аспект воспринимаемого мира.

Альтернативные теории предлагались, но только лишь для того, чтобы оказаться экспериментально опровергнутыми. Например, неплохая теория, сформулированная в 1970-х годах и названная техническим именем SU(5), заменила беспорядочные уравнения Стандартной модели структурой поэлегантнее и гораздо более простой. Теория предсказывала, что протон может распадаться, с некоторой вероятностью, превращаясь в электроны и кварки. Чтобы пронаблюдать, как протоны распадаются, соорудили большие машины. Физики посвящали свои жизни попытке наблюдать распад протона. (Зараз вы смотрите не на один протон, поскольку его распад занимает слишком много времени. Вы берете тонны воды и окружаете ее чувствительными детекторами, чтобы зарегистрировать эффекты от распада.) Но, как это ни прискорбно, ни один протон так и не увидели распадающимся. Красивая теория SU(5), несмотря на все свое изящество, не подтвердилась.

Возможно, сейчас та же история повторяется с группой теорий, известных как «суперсимметричные», которые предсказывают существование нового класса частиц. Всю свою карьеру я слушал коллег, уверенно ожидающих неизбежного появления этих частиц. Минули дни, месяцы, годы и десятки лет – однако суперсимметричные частицы до сих пор себя не проявили. Физика – это не только история успехов.

Итак, пока мы вынуждены довольствоваться Стандартной моделью. Может, она не очень-то изящна, однако, описывая мир вокруг нас, работает прекрасно. И кто знает – возможно, при более тщательном изучении окажется, что это не модели не хватает элегантности. Что, если это мы еще не научились смотреть на нее под правильным углом, таким, под которым обнаружится ее скрытая простота?



Итак, на данный момент мы знаем о материи следующее: это горсточка типов элементарных частиц, которые непрерывно колеблются между существованием и несуществованием, мельтешат в пространстве, даже когда кажется, что оно пусто, и объединяются вместе в бесконечность, как буквы космического алфавита, рассказывая грандиозную историю галактик, неисчислимых звезд, солнечного света, гор, лесов и нив, улыбающихся молодых лиц на вечеринках и ночного неба, усыпанного звездами.




=============== 5 ===================



В самой основе нашего понимания физического мира есть парадокс. XX век подарил нам две жемчужины, о которых я говорил: общую теорию относительности и квантовую механику. Из первой развились космология, астрофизика, исследование гравитационных волн, черных дыр и много чего еще. Вторая легла в основу атомной и ядерной физики, физики элементарных частиц, физики конденсированного состояния вещества и многого-многого другого. Две теории, такие щедрые на приложения, краеугольный камень современных технологий, изменивших нашу жизнь. И все же обе теории не могут быть верны одновременно, по крайней мере в своих современных формулировках, поскольку они противоречат друг другу.

Студента университета, посещающего лекции по общей теории относительности по утрам, а по квантовой механике по вечерам и заключившего, что его профессора или дураки, или пренебрегали общением друг с другом по меньшей мере сто лет, следует простить. Утром мир – искривленное пространство, где все непрерывно, а вечером – плоское пространство, где скачут кванты энергии.

Парадокс в том, что обе теории работают удивительно хорошо. Природа ведет себя с нами, как тот пожилой раввин, к которому пришли двое мужчин разрешить свой спор. Выслушав первого, раввин говорит ему: «Ты прав». Второй настаивает на том, чтобы его тоже выслушали, раввин выслушивает и говорит: «И ты прав». Из соседней комнаты раввину кричит его жена: «Но не могут же они оба быть правы!» Он задумывается, а потом кивает: «И ты тоже права».


Группа физиков-теоретиков, рассеянная по пяти континентам, старательно пытается решить эту проблему. Область их исследований называется квантовой гравитацией. Их цель – найти теорию, то есть набор уравнений (но прежде всего – внутренне непротиворечивое видение мира), с помощью которой удалось бы разрешить сегодняшнюю шизофрению.

Физика не впервые сталкивается с двумя в высшей степени успешными, но очевидно противоречивыми теориями. Усилия по объединению, прикладывавшиеся в прошлом, были вознаграждены колоссальным шагом вперед в нашем понимании мира. Ньютон открыл всемирное тяготение, связав параболы Галилея с эллипсами Кеплера. Максвелл написал уравнения электромагнетизма, совместив электрическую и магнитную теории. Эйнштейн сформулировал теорию относительности, стремясь разрешить очевидное противоречие между электромагнетизмом и механикой. На самом деле физик счастлив, когда находит подобное противоречие между успешными теориями: это уникальный шанс. Сможем ли мы построить концептуальный каркас для размышлений о мире, который согласовывался бы с тем, что мы уже узнали благодаря обеим теориям?

Здесь, за границей знания, на переднем крае, наука становится еще красивее – раскаленная в горниле зарождающихся идей, прозрений, дерзаний. Путей выбранных и позже оставленных, увлеченности. В стремлении представить то, чего прежде еще никто не мог вообразить.

Двадцать лет назад туман был плотным. Сегодня сквозь него проступили очертания, внушившие воодушевление и оптимизм. Наметившихся направлений для поиска несколько, так что нельзя сказать, что проблема решена. Разнообразие рождает споры, но полемика приносит пользу: пока туман окончательно не рассеется, хорошо иметь критические замечания и противоположные точки зрения. Одна из главных попыток разрешить проблему – направление исследований под названием «петлевая квантовая гравитация», развиваемое большой командой ученых, которые работают во многих странах.

Петлевая квантовая гравитация – это дерзновение объединить общую теорию относительности с квантовой механикой. Однако это попытка осторожная, поскольку используются только гипотезы, уже содержащиеся в этих теориях, – переписанные соответственным образом, чтобы сделать их совместимыми. Но ее следствия радикальны: дальнейшее глубокое преобразование того, как мы смотрим на структуру реальности.

Идея проста. С одной стороны, общая теория относительности научила нас тому, что пространство – не статичная коробка, а скорее нечто динамичное: своего рода необъятная гибкая раковина улитки, в которую мы заключены и которая способна сжиматься и изгибаться. С другой стороны, квантовая механика научила нас тому, что каждое поле состоит из квантов и имеет мелкозернистую структуру. Отсюда немедленно следует, что физическое пространство также сделано из квантов.

И действительно, важнейший результат петлевой квантовой гравитации в том, что пространство не непрерывно, не бесконечно делимо, а составлено из песчинок – «атомов пространства». Они чрезвычайно мелки: в миллиард миллиардов раз меньше самого маленького атомного ядра. Теория описывает эти «атомы пространства» в математической форме и предлагает определяющие их эволюцию уравнения. Песчинки пространства назвали «петлями», или кольцами, поскольку они соединяются друг с другом, формируя сеть связей, из которых соткана текстура пространства, – словно кольца искусно сплетенной необозримой кольчуги.

Где эти кванты пространства? Нигде. Они не где-то в пространстве, поскольку они сами и есть пространство. Пространство создано сцеплением этих отдельных квантов гравитации. Опять-таки представляется, что мир – больше не об объектах, а о взаимодействиях.

Однако самое поразительное следствие теории – второе. Подобно тому как исчезает понятие непрерывного пространства, содержащего в себе объекты, пропадает также и понятие базового и первичного «времени», которое течет независимо от объектов. Уравнения, описывающие песчинки пространства и материи, больше не содержат временно́й переменной. Это не означает, что все стационарно и неизменно. Напротив, это значит, что изменение вездесуще – но элементарные процессы не могут упорядочиваться в привычную последовательность «моментов». На мельчайшем уровне песчинок пространства танец природы не происходит в ритме взмахов палочки единственного дирижера оркестра, в едином темпе: каждый процесс танцует независимо от своих соседей, в своем собственном ритме. Ход времени – «встроенное» свойство мира, оно зарождается в нем самом во взаимоотношениях между квантовыми событиями, составляющими мир, которые сами и есть источник времени.

Стало быть, мир, описываемый этой теорией, еще дальше отодвигается от привычного нам. Нет больше пространства, «заключающего в себе» мир, и нет больше времени, «в котором» происходят события. Есть лишь элементарные процессы, в которых кванты пространства и материи беспрестанно взаимодействуют друг с другом. Иллюзия пространства и времени, сохраняющаяся вокруг нас, – размытое восприятие этого мельтешения элементарных процессов, точно так же, как спокойное, чистое альпийское озеро на самом деле создается вихрем мириадов крохотных молекул воды.


Возможно ли проверить эту теорию экспериментально? Мы ломаем над этим головы и пробуем, но пока экспериментального подтверждения нет.



================== 6 =======================



Принципиальное явление, отличающее будущее от прошлого, – это переход тепла от более горячего к более холодному.

Итак, еще раз: почему с течением времени тепло передается от горячих объектов к холодным, а не в противоположном направлении?

Причину открыл Больцман, и она удивительно проста: это чистая случайность.

квантовая механика предсказывает, что движение всякого мельчайшего объекта определяется случайностью. Это также пускает в ход вероятность. Однако вероятность, рассматривавшаяся Больцманом, вероятность в основе теплоты, имеет иную природу и не зависит от квантовой механики. Вероятность, задействованная в науке о теплоте, в определенном смысле связана с нашим неведением.

Какое отношение наше знание или незнание имеют к законам, управляющим миром? Вопрос справедливый. А ответ на него – хитрый.

Чайная ложка и воздушный шар ведут себя так, как и должны, подчиняясь законам физики, совершенно независимо от того, что мы знаем или не знаем о них. Предсказуемость или непредсказуемость их поведения не связана с их точным состоянием, она связана с ограниченным набором их свойств, с которым мы имеем дело. Этот набор свойств зависит от нашего определенного способа взаимодействовать с чайной ложкой или с воздушным шаром. Вероятность не имеет отношения к изменению вещества как таковому. Она имеет отношение к изменению тех конкретных величин, с которыми мы взаимодействуем. И снова дает о себе знать глубоко относительная природа понятий, используемых нами, чтобы организовывать мир.

Холодная чайная ложка нагревается в горячем чае, поскольку чай и ложка взаимодействуют с нами через ограниченное число показателей – из бесчисленных показателей, характеризующих их микросостояние. Полезности этих показателей недостаточно для того, чтобы предсказать будущее поведение точно (понаблюдайте за воздушным шаром), но достаточно, чтобы предсказать с оптимальным уровнем надежности, что ложка нагреется.


Между прошлым и будущим есть явная разница, только когда происходит передача тепла. Теплота связана с вероятностью, а вероятность, в свою очередь, связана с тем обстоятельством, что наши взаимодействия со всем остальным миром не учитывают мелких деталей реальности. Так что течение времени возникает из физики, но не в контексте точного описания вещей такими, какие они есть. Оно возникает скорее в привязке к статистике и термодинамике. Вот где может покоиться ключ к загадке времени. «Настоящее» не существует в объективном смысле больше, чем «здесь» существует действительно, но микроскопические взаимодействия в мире вызывают появление преходящего признака внутри системы (например, внутри нас самих), «общающейся» только через несметное число переменных.


Наши память и сознание построены на этих статистических феноменах. В гипотетической сверхчувственной жизни не будет никакого «течения» времени: Вселенная станет единым блоком прошлого, настоящего и будущего. Но из-за ограниченности нашего сознания мы воспринимаем только размытый образ мира и живем во времени. Как сказал мой итальянский редактор, «то, что не наблюдаемо, значительно грандиознее, чем наблюдаемое». Из этого-то ограниченного, нечеткого фокуса и возникает наше восприятие хода времени.


Используя квантовую механику, Хокинг успешно показал, что черные дыры всегда «горячие». Они излучают тепло, словно печь. Это первое конкретное указание на природу «горячего пространства». Никто еще никогда не зарегистрировал этого тепла, поскольку оно слабое в тех черных дырах, которые мы наблюдали до сих пор, – однако вычисления Хокинга убедительны: они перепроверены разными способами, так что реальность теплоты черных дыр общепризнанна.

Теплота черных дыр – это квантовый эффект (действующий на объект, черную дыру), гравитационный по своей природе. Отдельные кванты пространства, элементарные песчинки пространства, колеблющиеся «молекулы» – вот что нагревает поверхность черных дыр и производит их тепло. В этот феномен вовлечены все три стороны проблемы: квантовая механика, общая теория относительности и теплофизика.

Теплота черных дыр – словно Розеттский камень физики с надписью на смеси трех языков: квантового, гравитационного и термодинамического. С надписью, все еще ожидающей расшифровки, чтобы пролить свет на настоящую природу времени.




============= 7===================


между тем, что мы способны воссоздать и понять своими ограниченными средствами, и реальностью, часть которой мы сами, стоят бессчетные фильтры: наше неведение, ограниченность наших чувств и разума


Противоречие между этими двумя различными видами человеческой деятельности – выдумывать истории и идти по следам, ища что-то, – источник непонимания науки и недоверия к ней, демонстрируемых значительной частью нашей современной культуры. Различие между ними тонкое: антилопа, скачущая на рассвете, не так уж далеко отстоит от божества из ночной сказки, явившегося в виде антилопы.

Граница проницаема. Мифы питают науку, а наука питает мифы. Но ценность знания остается. Если найдем антилопу – сможем поесть.

Наше знание последовательно отражает мир. И делает это в целом хорошо, но оно отражает мир, который мы сами населяем. Это сообщение с миром не отличает нас от остальной природы. Все объекты постоянно взаимодействуют друг с другом, и при этом каждый имеет перед собой следы того, с чем он взаимодействовал: и в этом смысле все объекты непрерывно обмениваются информацией друг о друге.

Информация, которой обладает одна физическая система о другой, не имеет в себе ничего сознательного или субъективного: это лишь связь, которую физика устанавливает между состоянием одного объекта и состоянием другого. Дождевая капля несет информацию о наличии в небе тучи; солнечный луч – о цвете вещества, от которого он пришел; часы – о времени дня; ветер – о приближающейся буре; простудный вирус – о восприимчивости моего носа; ДНК в наших клетках содержит всю наследственную информацию (которая делает меня похожим на моих родителей); а мой мозг полон информацией, накопленной опытом. Первичный материал наших мыслей – огромный массив данных, накапливаемых, передаваемых и непрерывно обрабатываемых.

Даже термостат в моей системе отопления «чувствует» и «знает» температуру воздуха в моем доме, имеет о ней сведения и выключается, когда становится достаточно тепло. Так в чем же тогда разница между «чувствованием» и «знанием» моего термостата – понимающего, что уже тепло, и свободно решающего, выключать ли отопление, – и моим собственным «чувствованием» и «знанием», что я существую? Как непрерывный обмен информацией в природе может порождать нас и наши мысли?

Вопрос открыт, и сейчас разрабатывается множество хороших решений. В этой области науки, на мой взгляд, самой интересной, вот-вот начнется большой прогресс. Сегодня новые методы позволяют нам регистрировать активность функционирующего мозга и с поразительной точностью составлять карты его чрезвычайно запутанных нейронных сетей. В 2014 году была составлена первая полная подробная карта (в мезомасштабе) связей в мозге млекопитающего. Сейчас обсуждаются конкретные гипотезы, как математическая структура может согласовываться с субъективным опытом сознания, – обсуждаются не только философами, но и специалистами по нейронауке.

Любопытна, например, математическая теория, разрабатываемая Джулио Тонони – итальянским ученым, работающим в США. Она называется теорией объединенной информации и представляет собой попытку количественно охарактеризовать структуру, которую система должна иметь для того, чтобы обладать сознанием. Это способ описать, в частности, что же все-таки меняется на физическом уровне при переходах между состояниями бодрствования (когда сознание работает) и сна без сновидений (когда сознание отключено). Теорию продолжают развивать. У нас по-прежнему нет убедительного и признанного ответа на вопрос, как формируется наше сознание. Но мне кажется, что туман начинает рассеиваться.

Один вопрос о нас зачастую вызывает недоумение: что означает наша свобода принимать решения, если наше поведение только лишь следует предопределенным законам природы? Нет ли здесь противоречия между нашим ощущением свободы и строгостью, как мы ее сейчас понимаем, с какой все в мире работает? Может, в нас есть нечто, ускользающее от законосообразности природы и позволяющее нам вилять и уклоняться от ее предписаний благодаря могуществу нашей свободы мыслить?

Что ж, в нас нет ничего, что способно было бы избежать законов природы. Если бы что-то в нас могло преступить их, мы бы это уже обнаружили. В нас нет ничего, что нарушало бы естественный ход вещей. Это подтверждается всей современной наукой – от физики до химии и от биологии до нейронауки.

Ответ на этот вопрос – в чем-то другом. Когда мы говорим, что свободны, а это действительно так, то имеем в виду, что наше поведение определяется происходящим внутри нас, в мозге, а не внешними причинами. Быть свободными не означает, что наше поведение не управляется законами природы. Это означает, что оно управляется законами природы, действующими в нашем мозге.

Наши свободно принимаемые решения свободно определяются результатами разнообразных и кратковременных взаимодействий между миллиардами нейронов в нашем мозге: они свободны в той мере, в какой позволяют им и определяют их взаимодействия этих нейронов. Значит ли это, что, когда я принимаю решение, мое «я» принимает его? Да, безусловно, поскольку нелепо спрашивать, может ли «я» делать что-либо отличное от того, что решила совокупность моих нейронов: «я» и совокупность моих нейронов – одно и то же, как с удивительной ясностью понял в XVII веке нидерландский философ Барух Спиноза.

Нет отдельных «я» и «нейронов в моем мозге» – это одно и то же. Личность есть процесс: сложный и слаженный.

Когда мы говорим, что человеческое поведение непредсказуемо, мы правы, поскольку оно слишком сложно для предсказывания, особенно нами самими. Наше глубокое чувство внутренней свободы, как остро осознал Спиноза, объясняется тем, что наши представления о себе гораздо грубее и схематичнее, чем обстоятельная сложность происходящего внутри нас. Мы источник изумления в своих же собственных глазах.

У нас сотня миллиардов нейронов в мозге, столько же, сколько звезд в галактике, с еще большим числом связей и потенциальных сочетаний, через которые они могут взаимодействовать. Мы всего этого не осознаем. «Мы» есть процесс, формирующийся всей этой многосложностью, а не только той маленькой ее частью, которую сами осознаем.

«Я», принимающее решения, – ровно то же «я», которое формируется (способом, до сих пор, разумеется, не вполне понятным, но начавшим поддаваться нашему исследованию) из мыслей о себе; через представление себя в мире; из понимания себя как переменной точки зрения, помещенной в контекст мира; из этой впечатляющей структуры, обрабатывающей информацию и создающей образы, – нашего мозга. Когда мы чувствуем, что это наше «я» принимает решение, мы совершенно правы. Кто же еще?

Как утверждал Спиноза, я – это мое тело и происходящее в моем мозге и сердце, с их колоссальной и непостижимой для меня сложностью. Стало быть, научная картина мира, о которой я рассказывал на этих страницах, не вступает в противоречие с нашим ощущением себя самих. Она не противоречит нашему мышлению с точки зрения нравственности и психологии или нашим эмоциям и чувствам. Мир сложен, и мы воспринимаем его на разных языках, каждый из которых подходит для описываемого им процесса. Любой сложный процесс может рассматриваться и пониматься на разных языках и на разных уровнях. Эти разнообразные языки пересекаются, переплетаются и взаимно усиливают друг друга, как и сами процессы. Изучение нашей психологии становится более искусным благодаря нашему пониманию биохимии мозга. Изучение теоретической физики подпитывается страстями и эмоциями, оживляющими нашу жизнь.

Наши моральные ценности, эмоции, привязанности не менее действительны из-за того, что составляют часть природы, разделяются миром животных и определяются миллионами лет эволюции живых существ. Наоборот, они даже ценнее в результате всего этого: они реальны. Они – сложная реальность, из которой мы сделаны. Наша реальность – это слезы и смех, благодарность и альтруизм, верность и предательство, преследующее нас прошлое и беззаботность. Наша реальность состоит из собранных нами вместе обществ, вызываемых музыкой чувств, богатых запутанных сетей общеизвестного знания. Все это часть одной и той же «природы», которую мы описываем. Мы неотъемлемая часть природы, мы – природа в одном из ее бесчисленных и бесконечно разнообразных проявлений. Вот что мы поняли благодаря нашему постоянно растущему знанию об этом мире.

То, что делает нас, людей, особенными, не означает наш отрыв от природы, это часть той же самой природы. Форма, которую приняла природа здесь, на нашей планете, в бесконечной игре сочетаний, через усиление и изменение взаимосвязей и обмен информацией между своими частями. Кто знает, сколько еще на бескрайних просторах космоса существует других необычайных сложностей и каких именно – возможно, в формах, которые мы даже не в силах себе представить… Там наверху столько пространства, что несерьезно думать, будто в дальнем уголке обычной галактики могло появиться нечто уникальное, единственное в своем роде. Жизнь на Земле – лишь скромный образчик того, что может произойти во Вселенной. Сама наша душа – только небольшой пример.

Мы вид, по своей природе движимый любопытством, единственный оставшийся из группы, состоявшей из дюжины одинаково любопытных видов (рода Homo). Одни виды из группы вымерли уже давно, другие, как неандертальцы, – относительно недавно, примерно тридцать тысяч лет назад. Это группа видов, которая возникла в Африке, родственная задиристым шимпанзе с их жесткой иерархией и еще более близким родством связанная с бонобо – карликовыми шимпанзе, изящными, миролюбивыми, предпочитающими равноправие и совершенно неразборчивыми в половых связях. Группа видов, неоднократно выходившая из Африки осваивать новые миры и забравшаяся далеко: в конечном счете в Патагонию – и на Луну.

Проявлять любопытство – не противоестественно, это в нашей природе.

Сто тысяч лет назад наш вид вышел из Африки, возможно подгоняемый именно любопытством, учась заглядывать вперед дальше, чем когда бы то ни было. Пролетая над Африкой ночью, я гадал, мог ли кто-нибудь из наших далеких предков, отправляясь к широким просторам севера, посмотреть в небо и представить себе далекого потомка, летящего там наверху, размышляющего о природе вещей и движимого все тем же самым любопытством.

Я убежден, что наш вид долго не просуществует. Он не выглядит сделанным из того же теста, которое позволяет, например, черепахе существовать более или менее неизменной уже сотни миллионов лет – в сотни раз дольше, чем вообще существует род Homo. Мы принадлежим к короткоживущему роду. Все остальные его виды уже вымерли. Вдобавок мы еще несем разрушение. Вызванные нами безжалостные климатические и другие изменения окружающей среды вряд ли нас пощадят. Для планеты они могут обернуться небольшим, малозначащим сбоем, но я не думаю, что мы переживем их целыми и невредимыми, тем более что общество и политики предпочитают игнорировать опасности, которым мы все подвергаемся, пряча свои головы в песок. Вероятно, мы единственный вид на Земле, представители которого сознают неминуемость собственной, индивидуальной смерти. Боюсь, что скоро нам также придется стать единственным видом, который сознательно будет наблюдать наступление своей полной гибели или по меньшей мере гибели своей цивилизации.

Поскольку в целом мы хорошо знаем, как справляться с индивидуальной смертностью, то справимся и с коллапсом цивилизации. Разница не такая уж большая. И это будет определенно не первый раз, когда такое случится. Майя и критяне, помимо многих других, такое уже переживали. Мы рождаемся и умираем, как рождаются и умирают звезды, поодиночке и все вместе. Это наша реальность. Жизнь драгоценна для нас потому, что быстротечна. Как сказал Лукреций: «И неуемной всегда томимся мы жаждою жизни» («О природе вещей»,[5] III, 1084). Но, погруженные в природу, создавшую и направляющую нас, мы не бездомные существа, подвешенные между двумя мирами, – часть природы, но только до некоторой степени принадлежащая к ней и жаждущая чего-то еще. Нет, мы дома.

Природа – наш дом, и в ней мы дома. Этот странный, многоцветный и изумительный мир, который мы познаем, – где пространство зернисто, времени не существует, а объекты находятся нигде – не отстраняет нас от себя настоящих. Он лишь то, что наша врожденная любознательность открывает нам о месте нашего существования. О том, из чего мы сами сделаны. Мы сотканы из той же космической пыли, как и все остальное, и, когда мы тонем в страдании или испытываем большую радость, мы не что иное, как то, чем не можем не быть, – мы часть мира.

Это прекрасно выразил Лукреций («О природе вещей», II, 991–997):

Семени мы, наконец, небесного все порожденья: Общий родитель наш тот, от которого все зачинает Мать всеблагая, земля, дождевой орошенная влагой, И порождает хлеба наливные, и рощи густые, И человеческий род, и всяких зверей производит, Всем доставляя им корм, которым они насыщаясь Все беззаботно живут и свое производят потомство.

Любить и быть честными – часть нашей природы. Хотеть узнать больше и дальше учиться – часть нашей природы. Наше знание о мире продолжает расти.

У подвластного нашему изучению есть границы, и нас снедает жажда знания. Они в самых мелких деталях структуры пространства, в происхождении космоса, в природе времени, в феномене черных дыр и в механизмах наших собственных мыслительных процессов. Здесь, на краю известного нам, в соприкосновении с океаном неизведанного, сияют тайна и красота мира. И от них захватывает дух.

Комментариев нет: